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Abstract

For statistical design of an optimal "lter, it is probabilistically advantageous to employ a large number of observation
random variables; however, estimation error increases with the number of variables, so that variables not contributing to
the determination of the target variable can have a detrimental e!ect. In linear "ltering, determination involves the
correlation coe$cients among the input and target variables. This paper discusses use of the more general coe$cient of
determination in nonlinear "ltering. The determination coe$cient is de"ned in accordance with the degree to which
a "lter estimates a target variable beyond the degree to which the target variable is estimated by its mean. Filter
constraint decreases the coe$cient, but it also decreases estimation error in "lter design. Because situations in which the
sample is relatively small in comparison with the number of observation variables are of salient interest, estimation of the
determination coe$cient is considered in detail. One may be unable to obtain a good estimate of an optimal "lter, but
can nonetheless use rough estimates of the coe$cient to "nd useful sets of observation variables. Since minimal-error
estimation underlies determination, this material is at the interface of signal processing, computational learning, and
pattern recognition. Several signal-processing factors impact application: the signal model, morphological operator
representation, and desirable operator properties. In particular, the paper addresses the VC dimension of increasing
operators in terms of their morphological kernel/basis representations. Two applications are considered: window size for
restoring degraded binary images; "nding sets of genes that have signi"cant predictive capability relative to target genes
in genomic regulation. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

FuK r den statistischen Entwurf eines optimalen Filters ist es im probabilistischen Sinn vorteilhaft, eine gro{e Anzahl
von Beobachtungs-Zufallsvariablen zu verwenden. Der SchaK tzfehler steigt jedoch mit der Anzahl der Variablen, so da{
Variablen, die nicht zur Bestimmung der Zielvariablen beitragen, einen nachteiligen E!ekt haben koK nnen. Bei der
linearen Filterung involviert die Bestimmung die Korrelationskoe$zienten der Eingangs- und Zielvariablen. In diesem
Artikel wird die Verwendung des allgemeineren Bestimmungskoe$zienten fuK r die nichtlineare Filterung diskutiert. Der
Bestimmungskoe$zient ist de"niert gemaK { dem Grad, mit welchem die Zielvariable durch ein Filter besser geschaK tzt
wird als durch den Mittelwert der Zielvariablen. Eine EinschraK nkung des Filters verringert diesen Koe$zienten,
gleichzeitig aber auch den SchaK tzfehler beim Filterentwurf. Da Situationen, in denen die Stichprobe im Vergleich zur
Anzahl der Beobachtungsvariablen klein ist, von besonderem Interesse sind, wird die SchaK tzung des Bestimmungs-
koe$zienten im Detail betrachtet. Es ist moK glich, da{ man zwar keinen guten SchaK tzer eines Optimal"lters erhalten
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kann, jedoch trotzdem grobe SchaK tzwerte des Koe$zienten verwenden kann, um nuK tzliche Mengen von Beobachtungs-
variablen zu "nden. Da die SchaK tzung mit minimalem Fehler der Bestimmung zugrundeliegt, be"ndet sich diese Materie
an der Schnittstelle von Signalverarbeitung, automatisiertem Lernen und Mustererkennung. Mehrere Signalverar-
beitungsfaktoren wirken sich auf die Anwendung aus: Signalmodell, morphologische Operatordarstellung und
erwuK nschte Operatoreigenschaften. Der Artikel behandelt insbesondere die VC-Dimension wachsender Operatoren
unter Verwendung ihrer morphologischen Kern- und Basisdarstellungen. Zwei Anwendungen werden betrachtet: die
FenstergroK {e bei der Rekonstruktion gestoK rter binaK rer Bilder sowie in der Genom-Regulierung die Ermittlung von
GensaK tzen, die signi"kante praK diktive Eigenschaften bezuK glich Zielgenen besitzen. ( 2000 Elsevier Science B.V.
All rights reserved.

Re2 sume2

Pour de la conception statistique de "ltre optimal, il est probabilistiquement avantageux d'employer un large nombre
de variables d'observations aleH atoires; cependant, l'erreur d'estimation crom( t avec le nombre de variables, de sorte que les
variables qui ne contribuent pas à la deH termination de la variable cible peuvent avoir un e!et neH gatif. En "ltrage lineH aire,
cette deH termination implique les coe$cients de correH lation entre les variables d'entreH e et cibles. Cet article traite de
l'utilisation du coe$cient plus geH neH ral de deH termination en "ltrage non-lineH aire. Le coe$cient de deH termination est deH "ni
en accord avec le degreH auquel le "ltre estime une variable cible au-delà du degreH auquel la variable cible est estimeH e par
sa moyenne. La contrainte du "ltre diminue le coe$cient, mais aussi l'erreur d'estimation en conception de "ltres. Parce
que les situations ou l'eH chantillon est relativement petit en comparaison du nombre de variables d'observations sont d'un
inteH re( t majeur, l'estimation du coe$cient de deH termination est consideH reH e en deH tail. On peut e( tre incapable d'obtenir une
bonne estimation du "ltre optimal mais on peut cependant utiliser une estimation grossière du coe$cient pour trouver
des ensembles utiles de variables d'observation. Puisque l'estimation à erreur minimale sous-tend la deH termination, ce
mateH riel est à l'interface du traitement des signaux, de l'apprentissage informatique et de la reconnaissance des formes.
Plusieurs facteurs de traitement de signaux ont un impact sur l'application: le modèle de signal, la repreH sentation
d'opeH rateurs morphologiques, et les proprieH teH s deH sirables des opeH rateurs. En particulier, cet article traite de la dimension
VC d'opeH rateurs croissants en terme de lcurs repreH sentations en noyaux/bases morphologiques. Deux applications sont
consideH reH es: la taille de la fene( tre pour restaurer des images binaires et la recherche d'ensembles de gènes qui ont une
capaciteH preH dictive signi"cative relative à des gènes cibles en reH gulation geH nomique. ( 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

A fundamental problem of nonlinear digital sig-
nal (image) processing is the automatic design of
"lters to estimate an ideal random signal F from an
observed random signal G. Signi"cant e!ort has
gone into designing window-based "lters. For
these, an n-point window= is placed at a point z,
thereby determining a random vector X of G-values
in the window. A computational operator t is
applied to X to form an estimator t(X) of the
value >"F(z). The W-operator W is de"ned by
W(G)(z)"t(X). If F and G are jointly stationary,
then t is independent of z. The di$culty is that
"lter design usually depends on estimating a large
number of parameters. The number grows expo-

nentially with the number of observation random
variables composing X. The problem is mitigated
by optimizing over constrained classes of "lters and
by employing prior information; nonetheless,
a substantial amount of data is often required to
obtain precise (close-to-optimal) designed "lters.

One would like to use as large a window as
possible; however, as the window size grows, so
does the estimation error (for "xed sample size).
Thus, when considering window enlargement, it is
bene"cial to only adjoin points whose values pro-
vide more than a negligible increase in the deter-
mination of the target value in the ideal image. This
paper discusses the coe$cient of determination in
the context of nonlinear digital signal and image
processing.

2220 E.R. Dougherty et al. / Signal Processing 80 (2000) 2219}2235



Filter design is a form of inverse problem. We
consider F to be operated on by a random system
transformation N to produce the observed signal
G"NF. The inverse problem is to "nd an optimal
estimator W(G) for F. For a=-operator, the joint
random signal process (F, G) induces a distribution
on the (n#1)-vector (X, >). This induced distribu-
tion determines the optimal "lter. Often, we know
nothing about the distribution; however, in many
cases there are signal properties which imply that
the optimal "lter belongs to some subclass C of
"lters. For instance, N might be such that the opti-
mal "lter must be increasing. If so, then we can
estimate the optimal increasing "lter and thereby
lessen the amount of sample data required for pre-
cise estimation, without sacri"cing the goal of opti-
mality. More generally, from either theory or
experience, we might know that C will provide (or
likely provide) a good suboptimal "lter.

Recognizing the role of the signals in the "lter-
design paradigm is critical for appreciating estima-
tion of the coe$cient of determination as opposed
to estimation of an optimal "lter. For digital signal
processing, the logical structure of an optimal "lter
re#ects the structural relations between F and G.
This is perhaps best appreciated in morphological
image processing, where W is de"ned by structuring
elements (geometric templates) [48]. These struc-
turing elements exhibit completely the manner in
which the structure of G is to be transformed to
estimate the structure of F. Equivalently, they re-
#ect the manner in which the structural deforma-
tion of N can be best inverted. The error of the
optimal "lter re#ects the degree to which the struc-
tural deformation can be inverted by logical opera-
tions upon the random variables in the window.
A larger window is bene"cial because it provides
greater structural transformation, but statistical es-
timation of bene"cial structural transformations
becomes rapidly more di$cult for increasing win-
dow size.

For samples that are too small relative to the
number of observation variables, it is not possible
to obtain a good estimate of an optimal "lter;
however, it still may be possible to decide which
observations contribute more to the determination
of the unobserved variable. This information alone
will not tell us how to transform the observation

templates, but it will tell us the degree to which they
can be transformed to restore the ideal signal. For
structural properties, the size and shape of the
window are critical, and even if we only have crude
estimates of the coe$cients of determination for
various windows, we may still have enough in-
formation to decide the relative bene"t of di!erent
windows. Perhaps this is most evident in binary
image processing, where, for a "xed window size,
di!erent window shapes may reveal to very di!er-
ent degrees the relationship between the geometries
of the observed and unobserved images.

Because this paper is at the interface between
nonlinear signal processing, computational learn-
ing, and pattern recognition (in particular, the
Vapnik}Chervonenkis theory), it is important to
recognize the role of constraint in the statistical
design of nonlinear "lters. Most relevant is the
manner in which "lter constraints occur naturally
in accordance with image structure, algebraic prop-
erties of operators, and morphological operator
representation. For the general case of translation-
invariant binary operators, morphological repres-
entation restricted to "nite windows becomes an
extension of Boolean representation [2]. If one
only considers X as a binary vector and > as
a binary random variable to be estimated by
a trained operator, then statistical design lies in the
domain of computational learning, albeit, with the
representational structure of mathematical mor-
phology [5,6,13,16,27]. A similar statement applies
to the decomposition of gray-scale operators and
their unconstrained window design [3,14,19]. But
for the most part, this abstract perspective is not
germane in practice owing to the quantity of
sample data necessary for precise "lter estimation
[17]. Various techniques are applied to mitigate
the data demand and enhance the outputs: struc-
tural constraints on the operators [38], prior
knowledge concerning "lter structure [4,18], and
partial constraint for some observation variables
[46]. These constraints evolve out of signal pro-
cessing considerations, including desirable oper-
ator properties.

The increasing constraint has played a key role
in image operator theory, and morphological
erosion representation of increasing operators
pre-dates the general representation of arbitrary
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translation-invariant operators, "rst in terms of the
operator kernel [43], and then in terms of its basis
[24,41,42]. Owing to their prevalence and early
morphological representation, automatic design of
increasing operators came "rst [7,10,11]. Binary
increasing "lters, and stack "lters, which are essen-
tially binary because a single Boolean function op-
erates on threshold sets, have been especially
studied owing to their geometrical nature, smaller
data requirements, and less complex architecture
[1,7]. Structural constraints have played a key role
[23,34}36,52]. Design tools have been developed to
determine acceptable suboptimal estimates of an
optimal increasing "lter: recursive error estimation,
[37] iterative decomposition [21], adaptive design
[44], and genetic algorithms [26,33]. Direct "lter
synthesis from an image model has also been con-
sidered [12]. There are image models in which the
optimal increasing "lter is fully optimal, and others
where it is close to optimal, and therefore it is
a natural constraint. In addition, logical implemen-
tation of satisfactory suboptimal increasing "lters is
often extremely less complex than implementation
of corresponding non-increasing "lters. While the
increasing constraint occurs naturally in the con-
text of signal and image processing, the constraint
is also naturally viewed in the context of pattern
recognition, and to that extent we will consider the
VC dimension of increasing "lters in terms of their
morphological erosion bases.

For an instance from natural science where
measuring determination can be bene"cial, we con-
sider genomics, where the mRNA expression levels
of the full genome can be treated as a random time
vector [15]. One problem is to predict the expres-
sion level > of a speci"c gene at time t

1
from the

expression levels of a vector X"(X
1
, X

2
,2, X

n
)

of expression levels at time t
0
(t

1
. One can also

make predictions across the genome at a given
time. While geneticists would like to have logical
models by which one gene expression is predicted
by a set of expressions, both technology and cost
mitigate against the size of experiments necessary
for precise estimation of optimal predictors ("lters)
} for instance, with cDNA microarrays [8,22,47].
Nonetheless, insight into the regulatory mecha-
nisms of the genome can be gained when there is
knowledge as to which gene sets are regulatory

with respect to speci"c genes, especially when this is
combined with biological knowledge. Moreover,
appreciation of the relative degrees of determina-
tion between di!erent predictor gene sets can help
to design future experimentation via the formula-
tion of working hypotheses within the context of
functional genomics.

2. Coe7cient of determination

To de"ne a measure of determination, let > be
a random variable to be estimated via a subset X of
a family V of conditioning (observation) random
variables. A "lter (estimator) t(X) is formed by
a (measurable) function t whose domain is the
product space of the ranges of X, and whose range
is the range of >. The goodness of t(X) is typically
quanti"ed by an estimation error that is the ex-
pectation of a loss function l(a, b) measuring
the cost of the di!erence between a and b:
e[>,t(X)]"E[l(>, t(X))]. e[t] denotes the error
if> and X are clear from the context. Examples are
the mean-square error (MSE) E[D>!t(X)D2] and
mean-absolute error (MAE) E[D>!t(X)D], which
we denote by M[t]. Unconstrained optimization
results from allowing t to be any measurable func-
tion of the random variables of X and choosing
a function tX having minimal error. For uncon-
strained optimization, there is a basic monotonicity
property: if XLZLV, then e[tZ])e[tX]. This
property applies to X"0, in which case, t0 is
a constant that minimizes e[>, c] over all constants
c. Often t is constrained to a subclass of the class of
all functions of the random variables. For each
XLV, there is a function class C(X) from which
t is chosen. t

C(X)
denotes an optimal "lter from

C(X). Mathematically, a constraint C is a function
whose domain is the set of subsets of V and, for
each XLV, C(X) is a subset of the set of all
functions of X. A constraint is nested if XLZLV
implies C(X)LC(Z). If C is nested, then a mono-
tonicity property applies: e[t

C(Z)
])e[t

C(X)
] for

XLZ. We assume nested constraints. Uncon-
strained optimization is a special case of con-
strained optimization with C(X) being the class of
all functions on X, for all XLV. If we wish to
emphasize the constraint and the conditioning set,

2222 E.R. Dougherty et al. / Signal Processing 80 (2000) 2219}2235



and not the optimal "lter itself, then we may write
e[C, X] for the error of the optimal "lter t

C(X)
.

Two constrained function classes C(X) and D(X)
can be partially ordered by the subset relation,
meaning that C(X)LD(X). In this case, for "xed
X, e[t

D(X)
])e[t

C(X)
]. This partial order ex-

tends to the constraints themselves: C)D if
C(X)LD(X) for all XLV.

Consider a nested constraint C in which the
constant function class C(0) is unconstrained. If the
constant j

Y
denotes the best constant estimate of

>, then the coezcient of determination of > relative
to the conditioning set X for the constraint C is
de"ned by

h[C,X]"
e[j

Y
]!e[t

C(X)
]

e[j
Y
]

"

e[C, 0]!e[C,X]

e[C, 0]
.

(1)

It measures the relative decrease in error from esti-
mating > via X by t

C(X)
, rather than just by j

Y
.

Owing to nestedness, 0)h[C, X])1. Speci"cally,
if e[t

C(X)
]"0, then h[C, X]"1. If C and X

are contextually clear, we just write h. For "xed
X and constraints C and D, if C(X)LD(X), then
h[C, X])h[D, X]. Because C is nested, if XLZ,
then h[C, X])h[C, Z]. Thus, for constraint C, we
can de"ne the incremental determination for Z rela-
tive to X by

h`[C, X, Z]"h[C, Z]!h[C, X]. (2)

Note that, h`[C, 0, Z]"h[C, Z].
For real-valued random variables, MSE, and an

unbiased optimal estimator, determination can be
represented in terms of variances. Since t

C(X)
is

unbiased, E[t
C(X)

(X)]"k
Y
, the mean of >, and

E[>!t
C(X)

(X)]"0. Thus,

e[t
C(X)

]"E[D>!t
C(X)

(X)D2]

"Var[>!t
C(X)

(X)]. (3)

Moreover, j
Y
"k

Y
and e[j

Y
]"e[k

Y
]"p2

Y
"

Var[>]. Thus,

h[C, X]"
Var[>]!Var[>!t

C(X)
(X)]

Var[>]
. (4)

If t
C(X)

(X) and>!t
C(X)

(X) are uncorrelated, then
the numerator reduces to Var[t

C(X)
(X)] and

h[C,X]"
Var[t

C(X)
(X)]

Var[>]
(5)

which is the proportion of Var[>] `explaineda
by the optimal "lter. For a single observation X
for which X and > are jointly Gaussian, h is
the square of the correlation coe$cient for X and
>. It is via Eq. (4) that the coe$cient of deter-
mination has been used to measure the signi"cance
of multiple linear regression [51]. No such
simple reduction occurs for nonlinear digital signal
"lters.

3. Estimation error: unconstrained 5lters

A designed estimate of the optimal "lter is
derived from sample data. For an observation vec-
tor X"(X

1
, X

2
,2, X

n
), estimation is typically

achieved by applying an estimation rule to a ran-
dom sample S of vector-variable pairs identically
distributed to (X,>) to estimate the parameters
determining the optimal "lter. The goodness of
the estimation depends on the sample size. For
a sample size of N, we obtain an estimate tN

n
of the

optimal "lter, t
n
, and the error of the estimated

"lter is decomposed as

e[tN
n
]"e[t

n
]#D(tN

n
,t

n
), (6)

where D(tN
n
,t

n
) is the estimation error. D(tN

n
,t

n
)

depends on the estimation procedure for t
n
. Since

tN
n

depends on S, so does D(tN
n
,t

n
). We consider the

expectation E[D(tN
n
,t

n
)] of D(tN

n
,t

n
) over all sam-

ples. We could write tN,S
n

, e[tN,S
n

], D(tN,S
n

,t
n
), and

E
S
[D(tN,S

n
,t

n
)] to indicate the role of the sample S;

however, to ease notation we leave S implicit in the
notation.

Using Eq. (6), the coe$cient of determination is
estimated by

hN
n
"

e[tN
0
]!e[tN

n
]

e[tN
0
]

"

e[t
0
]!e[t

n
]#D(tN

0
,t

0
)!D(tN

n
,t

n
)

e[t
0
]#D(tN

0
,t

0
)

. (7)
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Since this estimator depends on the sample, it is
a random variable (as are the estimation errors).
Thus, our concern is with the expectation E[hN

n
].

Owing to the random variable D(tN
0
,t

0
) in the

denominator of hN
n
, analysis of E[hN

n
] is problem-

atic. However, usually there are very few para-
meters in tN

0
, and tN

0
can be precisely estimated. In

this case, we can obtain a good approximation by
letting D(tN

0
,t

0
)"0; namely,

hN
n
+

e[t
0
]!e[t

n
]!D(tN

n
,t

n
)

e[t
0
]

, (8)

Taking expectations yields

E[hN
n
]+h

n
!

E[D(tN
n
,t

n
)]

e[t
0
]

. (9)

Since E[D(tN
n
,t

n
)] '0, hN

n
is biased low as an

estimator of h
n
, the bias being the quotient in Eq.

(9). For consistent estimation rules, E[D(tN
n
,t

n
)]

P0 as NPR, and therefore hN
n

is asymptotically
unbiased. For small samples the bias can be
signi"cant. Hence, the question arises as to
how fast E[hN

n
]Ph

n
, or, equivalently, how fast

e[tN
n
]Pe[t

n
]. We will continue to assume the

suitability of the approximation D(tN
0
,t

0
)"0.

Without distributional assumptions on (X,>),
convergence can be very slow. To see this, suppose
X has real-valued components, > is binary, and
error is MAE. Let iN

n
be an estimator of M[t

n
]

based on a random sample of size N. Assuming

consistency, iN
n
!M[t

n
]P0 as NPR. The fol-

lowing theorem shows that convergence is arbitrar-
ily slow [9]: for any estimator iN

n
and for every

o'0, there exists a distribution of (X, >) such that

E[DiN
n
!M[t

n
]D]*1

4
!o. (10)

This bound applies at once to Eq. (9) to yield

h
n
!E[hN

n
]*

1!4o
4M[t

0
]
. (11)

4. Coe7cient of determination for unconstrained
binary 5lters

For a binary random vector X"(X
1
, X

2
,2,

X
n
) and a binary random variable >, the optimal

unconstrained MAE "lter is the binary conditional
expectation: t

n
(x)"1 if P(>"1Dx)'0.5 and

t
n
(x)"0 if P(>"1Dx))0.5. Implicit in the formu-

lation is that, for the null vector, X(0), t
0
(X(0))

is the thresholded mean of >. For any binary-
valued operator t, its kernel is de"ned by
K[t]"Mx: t(x)"1N. For the optimal "lter,
K[t

n
]"Mx: P(>"1Dx)'0.5N.

For n'0, the MAE for t
n

is expressed in terms
of the kernel by

M[t
n
]" +

x|K*tn +

P(x)P(>"0Dx)

# +
xbK*tn +

P(x)P(>"1Dx). (12)

It can be equivalently expressed as

M[t
n
]"+

x

P(x)minMP(>"0Dx), P(>"1Dx)N. (13)

This formulation is consistent with the MAE for
the null case, since k

Y
"P(>"1) and

M[t
0
]"M[j

Y
]"minMP(>"0), P(>"1)N. (14)

Using the fact that the total probability is one, the
determination can be expressed as

h
n
"

+xP(x)[minMP(>"0), P(>"1)N!minMP(>"0Dx), P(>"1Dx)N]
minMP(>"0), P(>"1)N

, (15)

where we assume that 0(k
Y
(1, so that min

MP(>"0), P(>"1)N'0.
For any x, the term of the sum corresponding to

x is the contribution of x to h
n
. We denote it by h

n
(x).

Suppose k
Y
*0.5 and x3K[t

n
]. Then the "rst

and second minimums in the numerator of Eq. (15)
are P(>"0) and P(>"0Dx), respectively, and

h
n
(x)"

P(>"1Dx)!P(>"1)

k
Y

P(x). (16)

If P(>"1Dx)'P(>"1), then h
n
(x)'0. Condi-

tioning by x increases the extent to which the
probability of > equaling 1 exceeds 0.5, and this is
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re#ected in a positive contribution for x. If, on the
other hand, P(>"1Dx)(P(>"1), then h

n
(x)(0.

Here, conditioning by x decreases the extent to
which the probability of > equaling 1 exceeds 0.5.
The situations for k

Y
*0.5 and x N K[t

n
],k

Y
)0.5 and x3K[t

n
], and k

Y
)0.5 and x N K[t

n
]

can be similarly analyzed.
For optimal unconstrained binary "ltering, we

need to estimate the conditional probabilities
P(>"1Dx) and the observation probabilities P(x).
The estimation error is

D(tN
n
, t

n
)" +

x|K*tn +DM
K*tN

n +

D1!2P(>"1Dx)DP(x), (17)

where D
M
denotes the symmetric di!erence between

the kernels. The error depends on how tN
n

is
estimated from the sample S. This can be done
using the sample probability estimates P

S
(x) and

P
S
(>"1Dx) computed from S. Then tN

n
is deter-

mined by using P
S
(>"1Dx) in place of P(>"1Dx)

in the de"nition of t
n
. The problem with this ap-

proach is that, for even modestly large windows,
the training set will be too small to obtain good
estimates; in fact, there will be many vectors never
observed in training. In the context of pattern rec-
ognition, there are various estimation rules for
P(>"1Dx) to circumvent this problem for the con-
ditional probabilities. In signal processing, when
there is insu$cient data to estimate P(>"1Dx) for
a vector x, a number of methods can be used to
de"ne tN

n
(x), including the use of prior signal in-

formation.
A case in point is di!erencing-"lter design, in

which tN
n
(x) is de"ned to be the component value

x
0

of x corresponding to the window center when
the estimate P

S
(>"1Dx) lacks su$cient credibility.

This means the pixel value is passed unless there is
su$cient reason to change it. Di!erencing "lters
have proven useful for the restoration and resolu-
tion conversion of digital documents [40]. If the
criterion to use P

S
(>"1Dx) to de"ne tN

n
(x) is that

Nx , the number of times x is observed during train-
ing, is at least q, then taking the expectation in Eq.
(17) yields

E[D(tN
n
, t

n
)]

" +
Mx>P(Y/1@x);0.5,x0/1N

dxP(P
S
(>"1Dx)

)0.5, N
x
*q)

# +
Mx>P(Y/1@x)x0.5, x0/0N

dxP(P
S
(>"1Dx)

'0.5, Nx*q)

# +
Mx>P(Y/1@x);0.5, x0/0N

dx[P(Nx(q)

#P(P
S
(>"1Dx))0.5, Nx*q)]

# +
Mx>P(Y/1@x)x0.5,x0/1N

dx[P(Nx(q)

#P(P
S
(>"1Dx)'0.5, Nx*q)], (18)

where dx"D2P(>"1Dx)!1D [18]. Di!erencing de-
sign yields consistent estimation of e[t

n
].

Returning to the general case, it is always true
that 0) h

1
) h

2
)2) h

n
)1; however, this

increasing determination relative to the number of
observations can be problematic when using
sample data. According to Eq. (9), the di!erence
between E[hN

k
] and E[hN

k`1
] is given by

E[hN
k`1

]!E[hN
k
]

+h
k`1

!h
k
!

E[D(tN
k`1

,t
k`1

)]!E[D(tN
k
,t

k
)]

e[t
0
]

.

(19)

The preceding numerator is nonnegative, and very
likely positive. If h

k`1
!h

k
is very small, and

D(tN
0
,t

0
)+0 (so that the approximation is accu-

rate), the di!erence between the expectations can be
negative, thereby yielding expected determination
coe$cients that are not monotone. Using more
variables is only bene"cial, relative to E[hN

n
], if the

increased determination more than o!sets the in-
creased estimation error.

5. Estimation error: constrained 5lters

Let t
n,C

denote the optimal "lter in a subclass C.
There is a cost of constraint, D(t

n,C
, t

n
), and

e[t
n,C

]"e[t
n
]#D(t

n,C
,t

n
). (20)

There is an estimation cost D(tN
C,n

, t
n,C

) for t
n,C

.
An analogue of Eq. (6) applies. Moreover,

e[tN
C,n

]"e[t
n
]#D(t

n,C
,t

n
)#D(tN

n,C
,t

n,C
). (21)

Hence, the expected estimate of the determination
coe$cient if we use a "lter from C is

E[hN
n,C

]+h
n
!

D(t
n,C

,t
n
)#E[D(tN

n,C
,t

n,C
)]

e[t
0
]

. (22)
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The constraint is bene"cial if and only if

D(t
n,C

,t
n
)#E[D(tN

n,C
,t

n,C
)] ( E[D(tN

n
,t

n
)]. (23)

If the optimal constrained "lter is not much worse
than the optimal "lter and there is su$cient im-
provement in estimation error, constraint is bene"-
cial. In many situations, the estimation error is so
great that constraint is necessary.

Insofar as estimation error for constrained "lters
is involved, the Vapnik}Chervonenkis theory ap-
plies. Consider MAE and, for t3C, de"ne the
empirical error estimate for t to be 1/N times the
number of errors made by t on the sample data.
Suppose the designed "lter tN

n
is chosen as the one

having minimal empirical error (which was done
when we used the sample probability estimates for
binary-"lter design). The Vapnik}Chervonenkis the-
orem states that, for o'0,

P(D(tN
n,C

, t
n,C

) 'o))8S(C,N)expC!
No2

32 D, (24)

where S(C,N) is the shatter coezcient of the class
C (to be explained shortly) [50]. The theorem
bounds the probability that D(tN

n,C
,t

n,C
) exceeds

o in terms of the shatter coe$cient and an exponen-
tial of !N. A consequence of the Vapnik}Cher-
vonenkis theorem is that

E[D(tN
n,C

, t
n,C

)])4S
log(8eS(C,N))

2N
.

(25)

Combining Eqs. (22) and (25) yields

h
n
!E[hN

n,C
])

D(t
n,C

,t
n
)

M[t
0
]

#4S
log(8eS(C,N))

2NM[t
0
]2

.

(26)

The "rst (constraint) summand on the right will be
small if the constraint "ts the signal model.

To de"ne the shatter coe$cient of a class of
"lters, begin by considering an arbitrary collection
A of measurable sets on Rn. If Mz

1
,z
2
,2,z

k
N is a set

of points in Rn, let

gA(z
1
,z
2
,2,z

k
)"cardMM z

1
,z
2
,2,z

k
NWA:A3AN,

(27)

where `carda denotes the cardinality of the class of
distinct subsets of Mz

1
, z

2
,2, z

k
N created by inter-

section with sets in A. The kth shatter coezcient of
A is de"ned by

s(A, k)" max
z
1 ,z2,2,zk

gA(z
1
,z
2
,2,z

k
). (28)

It is possible for s(A, k)"2k. If s(A, k)(2k, then
s(A, j)(2j for j'k. The Vapnik}Chervonenkis (VC)
dimension of A, denoted <A , is the largest integer
k for which s(A, k)"2k. If s(A, k)"2k for all k,
then <A"R. Shatter-coe$cient bounds can be
given in terms of the VC dimension [9]. For in-
stance, for any k,

s(A,k))
VA

+
i/1
A
k

iB. (29)

For a "lter class C, de"ne an associated class of sets
by

A
C
"M[K[t]XM0N]][K[t]c]M1N]:t 3 CN, (30)

K[t] being the kernel of t. The shatter coe$cient
of C is de"ned by S(C, k)"s(A

C
, k) and the VC

dimension of C is the VC dimension of A
C
. Bound-

ing inequalities such as the one in Eq. (29) can be
used to bound the probability of Eq. (24) in terms of
the VC dimension of C. Constraining the "lter class
constrains the VC dimension.

If there is no computationally feasible method
for choosing an optimal "lter from C via the em-
pirical error estimate, then a practical algorithm
might be used to approximate the empirical-error-
estimate "lter. There are various algorithms for
approximately optimal increasing "lters. When
there is a large number of variables, these methods
yield "lters that may not minimize the empirical
error estimate. The switching algorithm often yields
a "lter with minimal empirical error, and is usually
very close, even for large windows [31]. If an algo-
rithm yields the estimated "lter /N

n,C
from the

sample data, M
N

denotes empirical error,

P(M
N
[/N

n,C
])inf

t|C
M

N
[t]#o

N
)*1!d

N
(31)

and o
N
P0, d

N
P0 as NPR, then the Vap-

nik}Chervonenkis theorem can be modi"ed
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to state

P(D(/N
n,C

,t
n,C

) ' o)

)d
N
#8S(C,N)exp[!N(o!o

N
)2/128]. (32)

This condition means that, with probability ap-
proaching 1, the algorithm "nds an operator whose
empirical error exceeds the minimal empirical error
over C by an amount approaching 0 [9].

While the preceding limiting results are en-
couraging, for very small samples they may not be
helpful in choosing a constraint, especially if there
is little prior knowledge as to an appropriate con-
straint. Returning to the general error criterion,
suppose h

n
and /

n
are the determination coe$-

cients corresponding to a constraint C and a stron-
ger constraint D, meaning that D(X(n))LC(X(n)).
Then /

n
)h

n
. If t

n
and m

n
are the optimal "lters

for C and D, respectively, then E[D(tN
n
, t

n
)]*

E[D(mN
n
, m

n
)]and the inequality is likely to be strict.

It can be quite strict if D is a much stronger con-
straint. Thus, E[hN

n
] can be less than E[/N

n
]. If N is

small and one constraint is signi"cantly stronger
than another, then it is common for the expected
sample determination coe$cient for the stronger
constraint to be (perhaps much) more than for the
weaker constraint. Therefore it can be prudent to
use strongly constrained "lters. Rather than esti-
mate h

n
by hN

n
, since the estimators are biased

low and /
n
)h

n
, a better estimator of h

n
is

maxM/N
n
, hN

n
N.

6. Coe7cient of determination for increasing 5lters

We "rst consider binary operators. A binary op-
erator t is increasing if x)z implies t(x))t(z),
where x)z is de"ned componentwise. The basis of
t is de"ned by B[t]"K[t]~, where A~ is the
set of minimal elements in A. t possesses the mor-
phological supremum representation

t(x)"SMeb (x):b3B[t]N, (33)

where eb (x) denotes the erosion of x by the structur-
ing element b, de"ned by eb(x)"1 if b)x and
eb (x)"0 otherwise. If B[t]"Mb

1
, b

2
,2,brN, and

b
k
"(b

k1
, b

k2
,2, b

kn
) for k"1,2,2, r, then t

is parameterized by b
M
"(b

11
, b

12
,2, b

rn
). For

0(m(n, nestedness of the constraint follows
from the representation by letting b

1,m`1
"

b
1,m`2

"2"b
1,n

"b
2,m`1

"2"b
r,n

"0. In-
deed, the basis resulting from this transformation
can be viewed as a basis for m-dimensional oper-
ators. Hence, letting X(n) denote an n-component
vector, C(X(m))LC(X(n)) according to the injection
b
M
(m)Pb

M
(n) de"ned by the transformation. The con-

stant functions f0(x),0 and f1(x),1 are increas-
ing and hence contained in C(X(n)) for all n. f1 and
f0 possess representations according to Eq. (33) by
letting the basis consist of the zero vector and the
basis be null, respectively.

The MAE for an increasing operator t with
B[t]"Mb

1
, b

2
,2,b

r
N is given by

M[t]"
r
+
j/1

(!1)j`1

] +
1xi1:i2:2:ijxr

P(eb
i1[b

i2[2[b
ij
(X)O>). (34)

An estimate of the optimal increasing "lter can be
derived via a recursive formulation of the error that
gives the MAE for n-observation "lters in terms of
(n!1)-observation "lters [37]. It can also be de-
rived from the unconstrained optimal "lter by
switching vectors in and out its kernel to arrive at
the kernel of the optimal increasing "lter [31]. Eq.
(34) applies to the optimal increasing "lter by using
its basis. The coe$cient of determination is thereby
determined.

The general theory of mathematical morphology
treats operators between lattices; [28,29,49] the
theory of computational mathematical mor-
phology concerns operators t : ¸nPM, where
¸ and M are complete lattices [14,19,20]. Let
t : RnPM"M0,1,2,mN be an increasing func-
tion. For j"1, 2,2,m,t has kernel sets
K

1
[t], K

2
[t],2, K

m
[t] de"ned by K

j
[t]"

Mx3Rn : t(x)*jN. The basis sets are de"ned by
B

j
[t]"K

j
[t]~ for y"1,2,2, m. The kernel

and basis of t are K[t]"MK
1
[t], K

2
[t],2,

K
m
[t]N and B[t]"MB

1
[t], B

2
[t],2,B

m
[t]N,

respectively. An n-elemental erosion is de"ned, for
any b3Rn, by eb (x)"1 if b)x and eb (x)"0 other-
wise. As an operator, e

b
: RnPM0,1N. The basic rep-

resentation theorem states: if for any x3K
j
[t]

there exists r3B
j
[t] such that r)x, then the
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increasing function t : RnPM possesses the kernel
representation

t(x)"
m
+
j/1

SMeb (x):b3K
j
[t]N. (35)

A minimal representation results from taking the
supremum over all b3B

j
[t].

The kernel and basis representations are neces-
sary, and their form provides a su$cient repres-
entation in the sense that, for any class of sets
L

1
, L

2
,2, L

m
LRn, the operator de"ned by

Eq. (35) with L
j

in place of K
j
[t] is increasing

because eb is increasing. For the representation to
be a basis representation, L

1
, L

2
,2, L

m
must

satisfy two properties: (1) they must be consistent,
meaning that, if r3L

j
and l)j, then there exists

s3Ll such that s)r; and (2) each L
j

must be
self-minimal, meaning L

j
"L~

j
. Filter design in-

volves "nding a self-minimal, consistent class of sets
that determines an estimate of the optimal increas-
ing "lter. If R is replaced by a "nite integer interval,
then, as in the binary setting, there exists an exten-
sion of the error representation of Eq. (34) and
a "lter design algorithm based on a recursive for-
mulation of the error [39].

To see how the Vapnik}Chervonenkis theorem
applies to morphological signal processing, we ap-
ply it to increasing operators, t : RnPM0,1N. Eq.
(35) applies with m"1. For any structuring ele-
ment b"(b

1
, b

2
,2, b

n
),

K[eb]"
n
<
j/1

[b
j
,R). (36)

The VC dimension of the class of all n-products of
semi-in"nite intervals is n. Hence, the VC dimen-
sion of the class of all erosion kernels is n. The VC
dimension of a class of complements is the same as
the dimension of the class, the VC dimension is
unchanged by taking a product with a singleton,
and the VC dimension of a class of unions, A

1
XA

2
,

where A
1
3A

1
and A

2
3A

2
, is bounded by the

product of the VC dimensions of A
1

and A
2
.

Thus, from Eqs. (30) and (36), we conclude that the
VC dimension of the class of erosions is bounded
by n2. If t is a supremum of M erosions, thenK[t]
is the union of the M kernels. Hence, the VC dimen-
sion of the class of all M-erosion kernels is bounded

by nM, and Eq. (30) shows that the VC dimension of
the class of all M-erosion "lters is bounded by n2M.

7. Estimating the estimation error

Comparison of hN
n

and h
n

requires estimation of
D(tN

n
, t

n
). One way is to estimate it from the sample

S that gave the estimated "lter tN
n
. This resubstitu-

tion estimate for e[tN
n
] is de"ned by

e
S
[tN

n
]"

1

N
+

(x,y)|S

l(y,t(x)). (37)

Derivation of tN
n

from S is notationally implicit.
The resubstitution estimate for D(tN

n
, t

n
) is

D
S
(tN

n
, t

n
)"e

S
[tN

n
]!e[t

n
]. (38)

This leads to a corresponding resubstitution esti-
mate, hN,S

n
, for h

n
.

For binary "ltering with MAE, the resubstitu-
tion estimate M

S
[tN

n
] is the empirical error esti-

mate for tN
n

on the data of S. It is given by Eq. (13)
upon replacing all probabilities P by their esti-
mates, P

S
, from S. This yields the estimation-error

estimate

D
S
(tN

n
,t

n
)

"+
x

[P
S
(x)minMP

S
(>"0Dx),P

S
(>"1Dx)N

!P(x)minMP(>"0Dx), P(>"1Dx)N]. (39)

For each x observed in training, its term in the sum
may be positive or negative. If N is small relative to
n, then a large proportion of the vectors will not be
observed in training. For these, P

S
(x)"0, and the

summand for x will be null. These null terms tend
to make D

S
(tN

n
, t

n
) a low estimate of D(tN

n
, t

n
).

For small N, many vectors are observed only
once in training. For these, minMP

S
(>"0Dx),

P
S
(>"1Dx)N"0. This also lowers D

S
(tN

n
, t

n
). In-

deed, D
S
(tN

n
, t

n
) is typically negative, even if

D(tN
n
, t

n
) substantially exceeds 0. For an extreme

case, if each x is observed at most once in training,
then Eq. (39) reduces to D

S
(tN

n
, t

n
)"!M[t

n
]

and the MAE estimate is M
S
[tN

n
] "0. This situ-

ation is not rare for small N. Going further, Eq. (8)
applies with hN

n
and D(tN

n
, t

n
) replaced by their
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estimates hN,S
n

and D
S
(tN

n
, t

n
). If D

S
(tN

n
,t

n
) (0,

then hN,S
n

'h
n
.

Relative to random sampling, hN
n

and hN,S
n

are
both estimators of h

n
, and are functions of

D(tN
n
, t

n
) and D

S
(tN

n
,t

n
), respectively. For small N,

hN
n

and hN,S
n

tend to be substantially low- and high-
biased, respectively. The expectation E[D(tN

n
, t

n
)]

is based on the expected incremental error over the
entire probability space, and is given by

E[D(tN
n
,t

n
)]

"+
S
A+
(x,y)

DtN
n
(x)!yDP(x, y)BP(S)!M[t

n
]

"+
S
A+x P(x)(tN

n
(x)P(>"0Dx)

#(1!tN
n
(x))P(>"1Dx))BP(S)!M[t

n
],

(40)

where P(S) is the probability of sample S, tN
n

de-
pends on S, and the outer sum is over all samples.
For the resubstitution estimator,

E[D
S
(tN

n
, t

n
)]

"+
S
A+x [P

S
(x)minMP

S
(>"0Dx),

P
S
(>"1Dx)N]BP(S)!M[t

n
]

"+
S
A+x P

S
(x)(tN

n
(x)P

S
(>"0Dx)

#(1!tN
n
(x))P

S
(>"1Dx))BP(S)!M[t

n
].

(41)

Hence, the di!erence between the expectations is

E[D(tN
n
, t

n
)]!E[D

S
(tN

n
, t

n
)]

"+
S
A+x tN

n
(x)(P(x,0)!P

S
(x,0))

#(1!tN
n
(x))(P(x,1)!P

S
(x,1))BP(S). (42)

The di!erence results from di!erences between the
probabilities P(x, y) and their sample estimates. The

kind of reasoning applied subsequent to Eq. (39)
applies to show why it is common to have a large
di!erence when N is small relative to n. From
Eq. (9), E[hN,S

n
]!E[hN

n
] is given by the preceding

di!erence divided by M[t
0
]. From Eq. (42),

E[hN,S
n

]!E[hN
n
]P0 as NPR. In the small-N

direction, Eq. (39) shows that, for any d'0, there
exists a largest positive integer N

n,d such that
N)N

n,d implies E[D
S
(tN

n
,t

n
)])!M[t

n
]#d.

Thus, N)N
n,d implies E[hN,S

n
]*1!d.

In general (not just for MAE), for small N we
usually have hN

n
)h

n
)hN,S

n
. The matter is clari"ed

by expectations. e[t
n
] can be estimated via S

to obtain an estimate e
S
[t

n
]. Since tN

n
is optimal

on S, e
S
[tN

n
])e

S
[t

n
]. Since sampling is random,

taking expectations relative to sampling yields
E[e

S
[tN

n
]])e[t

n
]. Therefore, owing to the opti-

mality of t
n
,

E[e
S
[tN

n
]])e[t

n
])E[e[tN

n
]]. (43)

Moreover, E[e
S
[tN

n
]]Pe[t

n
] as NPR, and

E[e[tN
n
]]Pe[t

n
] as NPR. Hence, the double

inequality of Eq. (43) provides an envelope con-
verging upon the error of the optimal "lter
[25,30,45]. Subtracting e[t

n
] from the inequalities

and applying Eq. (9) yields

E[hN
n
])h

n
)E[hN,S

n
]. (44)

Moreover, E[hN,S
n

]!E[hN
n
]P0 as NPR.

If there is su$cient test data, say J pairs, beyond
that used for training, then we can take a standard
training-testing approach by designing a "lter tN

n
,

and estimating e[tN
n
] and e[tN

0
] from the test data.

An estimate hK N,J
n

of h
n

is obtained from the error
estimates. J has to be large enough to get good
estimates of e[tN

n
] and e[tN

0
]. Alternatively, we

could take M random samples, S
1
, S

2
,2, S

M
;

estimate t
0

and t
n
from each S

k
to obtain estimate

"lters tN
0,1

, tN
0,2

,2, tN
0,M

, and tN
n,1

, tN
n,2

,2, tN
n,M

;
use independent data to obtain error estimates
e( [tN,J

0,1
], e( [tN,J

0,2
],2, e( [tN,J

0,M
], e( [tN,J

n,1
], e( [tN,J

n,2
],2,

e( [tN,J
n,M

]; and then form the estimator

hK N
n
"

1

M

M
+
k/1

hK N,J
n,k

"

1

M

M
+
k/1

e( [tN,J
0,k

]!e( [tN,J
n,k

]

e( [tN,J
0,k

]
. (45)

The principle is straightforward: if, after "nding the
estimate "lters, we could "nd their exact errors

E.R. Dougherty et al. / Signal Processing 80 (2000) 2219}2235 2229



Fig. 1. (a) Ideal image and, (b) observed image (partial).

without depending on test data, then each sum-
mand in Eq. (45) would be replaced by

hK N
n,k

"

e[tN
0,k

]!e[tN
n,k

]

e[tN
0,k

]
, (46)

which is a sample value for hN
n
. The estimator of Eq.

(45) would then be the sample mean for hN
n
, which is

a consistent estimator of hN
n
. For large test-data

sets, the estimator of Eq. (45) is close to the sample
mean for hN

n
. As an estimator of h

n
, it depends on

both N and J. If N#J is "xed, then increasing
N and decreasing J improves the designed "lters
while reducing the precision of the error estimates;
whereas increasing J and decreasing N improves
the precision of the error estimates while making
the designed "lters poorer estimates of the optimal
"lter. In either case, one e!ect enhances estimation
of h

n
while the other diminishes it.

In practice we may have very limited data, and
therefore the procedure cannot be used as stated.
Instead, if there are Q sample pairs, we can proceed
by sequentially randomly splitting the data into
training sets S

1
, S

2
,2, S

M
of size N and test sets

¹
1
, ¹

2
,2, ¹

M
of size J"Q!N. Then compute

Eq. (45) using the "lters and errors from the train-
ing and test sets, respectively. The average provides
an estimator hI N

n
for hN

n
. For small N, the "lters

derived from the training data vary widely, as do

their errors. The strategy is based on law-of-large-
number e!ects insofar as hI N

n
approximates the

sample mean for hN
n
. Closeness to the sample mean

depends on su$ciently large J, which is problem-
atic. Moreover, random data splitting produces
a random sample relative to the data set, not the
distribution of (X,>), and therefore the degree to
which hI N

n
approximates the sample mean for hN

n
depends on the degree to which the data set "ts
the distribution of (X,>). The well-studied deleted-
estimate approach is to let J"1 and to design
"lters for all Q training sets having N"Q!1 data
pairs [9].

8. Application: image restoration

We consider estimation of the coe$cient of de-
termination for increasing window size based on
di!ering amounts of data in the case of binary
image restoration. We use the test-data estimator
hK N
n
(M"64) and the resubstitution estimator hN,S

n
.

Fig. 1 shows realizations of the ideal binary text
process and a degraded realization formed by
a well-used edge-degradation model [40]. Opti-
mal "lters have been designed using windows
containing 3 through 16 pixels. In each case, the
number of (x, y) pairs available is 67,320,000, and
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Fig. 2. Coe$cients of determination for each sample and window size (3D view).

various percentages of the full set, ranging from
0.001% of the data (684 sample pairs) through 2%
of the data (1,346,400 sample pairs) have been used
for training. Test errors have been computed using
the entire data set (which is su$ciently large that it
can be considered to be the full population, mean-
ing that hK N

n
can be considered to be a sample mean).

The 3D plot of Fig. 2 shows the computed values of
hK N
n

(lower surface) and hN,S
n

(upper surface) for vari-
ous window and data sizes. For "xed window size,
hK N
n

and hN,S
n

increase and decrease, respectively, for
increasing data size. For "xed data size, hN,S

n
in-

creases substantially for increasing window size (n);
however, for n*5, hK N

n
is fairly stable.

Graphs for the "xed (symmetric) window sizes 5,
9, 13, and 17 are shown in Fig. 3. The lower and
upper curves are for hK N

n
and hN,S

n
, respectively, and

the graphs include plots about each line showing
the manner in which the 64 individual (non-aver-
aged) estimates are dispersed for each estimator.
We see that these are far more dispersed for small
data sets. We also see that the estimates converge
together much more rapidly for small windows,
and that, for window size 17, they are still substan-
tially separated for the largest training set. When

hK N
n

and hN,S
n

have converged together, we can con"-
dently take their common value to be h

n
. For win-

dow sizes 5, 9, 13, and 17, we have the estimates
0.77, 0.78, 0.81, and 0.82, where the latter two are
guesses between the curves that have yet to
converge.

The problem is with small data sets. For these,
there is increasing divergence between hK N

n
and

hN,S
n

as n increases. For decreasing N, we are en-
couraged by the stability of the test error hK N

n
, as

opposed to the strongly increasing values of the
resubstitution error hN,S

n
. There are two reasons for

choosing hK N
n

over hN,S
n

. It provides a better estimate
of h

n
and is conservative. Nonetheless, it is biased

low, and the increasing monotonicity of h
n

for in-
creasing n can be violated by the estimates. For
the present experiment, hK N

13
"0.75( hK N

5
for data

size 10~2%.

9. Application: genomic control

The human genome is a highly complex nonlin-
ear control system regulating cell functions. A pri-
mary means for regulating cellular activity is the
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Fig. 3. Coe$cients of determination for "xed window sizes: (a) 5 pixels window, (b) 9 pixels window, (c) 13 pixels window, (d) 17 pixels
window.

control of protein production via the amounts of
mRNA expressed by individual genes. Levels of
gene expression are modulated by protein machin-
ery that senses conditions internal and external to
the cell. The tools required to build an understand-
ing of genomic regulation of expression are those
that reveal the probability characteristics of the
vector random function consisting of expression
levels. Basic to understanding is the ability to dis-
cover how expression levels of various genes, in
conjunction with external factors, can be used to
predict other expression levels. The study of expres-
sion-level prediction has recently been made pos-

sible by the development of cDNA microarrays, in
which transcript levels can be determined for thou-
sands of genes simultaneously. Microarray data
has been used to design discrete nonlinear pre-
dictors ("lters) whose observation variables are
gene expression levels and quanti"ers for external
stimuli [15,32]. The data are discrete because the
analog expression levels are quantized into ternary
expression data: [!1 (down-regulated), #1 (up-
regulated), or 0 (invariant)]. External stimuli are
quanti"ed as 1 [present] and 0 [not present]. Be-
cause there are many genes and a very small num-
ber of microarrays, it is not practical to precisely
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design "lters, but it is possible to estimate coe$-
cients of determination.

We brie#y describe an application to genotoxic
stress analysis using the data-splitting estimator hI N

n
.

We refer to the full study for a complete description
of methodology and experimental results [32]. The
experiment involved twelve genes and three ex-
ternal conditions. Thirty microarrays were used, so
that Q"30. The data was randomly split into
N"20 training pairs and J"10 test pairs. Error
was MSE. hI N

n
was based on M"256 trials. Because

of the small sample size, the number of predictors
was kept to n)4. Both unconstrained and con-
strained "lters were considered. The constrained
"lter was a ternary perceptron

m
n
(X(n))"¹(a

1
X

1
#a

2
X

2
#2#a

n
X

n
#b),

(47)

where the threshold function ¹ is de"ned by
¹(z)"!1 if z(!0.5, ¹(z)"0 if !0.5)
z)0.5, and ¹(z)"#1 if z'0.5. The optimal
perceptron was estimated by a stochastic training
algorithm. All possible sets of four or less predictors
were used to predict all possible targets.

Owing to the small sample-data set, we expect
the estimators to be quite low biased. To illustrate
the e!ects of constraint, let h

n
and /

n
be the uncon-

strained and perceptron predictors, respectively.
h
n
'/

n
, and the bias of hI N

n
should exceed the bias

of /I N
n
. What these biases are we have no way of

determining. Even with these low biases, some fair-
ly strong relations were observed. For predictor
genes IAP-1, PC-1, and SSAT, and target gene
BCL3, /I N

3
"0.664 and hI N

3
"0.334. Since h

3
'/

3
,

the error for hI N
3

as an estimator of h
3

exceeds the
di!erence, 0.330. Since a perceptron provides an
approximation of a linear "lter, there appears to be
a somewhat linear relation between the predictors
and the target. Based on the principle of taking the
maximum between the estimates for a weaker and
stronger constraint, we take 0.664 as our estimate
for h

3
. In some cases, the inherent nonlinearity of

genomic regulation can be su$ciently strong to
overcome the estimation-error di!erential. For pre-
dictor genes RCH1, PC-1, and p53, and target gene
BCL3, /I N

3
"0.174 and hI N

3
"0.507, a striking di!er-

ence. For target REL-B and predictor genes BCL3

and ATF3, in conjunction with external ionizing
radiation (IR), /I N

3
"0.528 and hI N

3
"0.603. There

are higher estimated coe$cients, for instance,
/I N
2
"0.733 for target REL-B and predictors SSAT

and IR.

10. Conclusion

Correlation can be used in linear "ltering to
evaluate the signi"cance of various observation
variables relative to estimating another random
variable. The coe$cient of determination can be
used for nonlinear "ltering. In areas such as image
processing, the demand for larger windows con-
tinues to grow with the access to increasing com-
putational power. Satisfactory "lter design can be
greatly enhanced by limiting the observations. By
using the envelope convergence of training and test
data estimators, it is possible to expend a great deal
of simulation power on getting good estimation of
the determination coe$cients for various windows,
and then simply restrict oneself to the most deter-
minative windows when practical constraints re-
quire using less data. In applications such as the
one from genomics, data is extremely limited and
there are strong requirements for nonlinear "lter-
ing. Estimation and determination problems loom
large and will no doubt receive much more atten-
tion. The determination coe$cient permits biol-
ogists to focus on particular connections in the
genome and coe$cient estimates are useful even if
they are biased and not overly precise, because at
least the estimated coe$cients provide a practical
means of discrimination among potential predictor
sets.

Because determination is based on error estima-
tion, the matter is closely related to pattern recog-
nition. Key di!erences include the kinds of
constraints and design tools relevant to signal and
image processing, the speci"cs of morphological
signal representation, and the desire for certain
algebraic and structural operator properties.
A main focus of this paper has been to explicate
some of the relevant relationships, in particular, as
they apply to increasing operators and their
basis/kernel representations. This is important for
estimation because numerous design tools for
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nonlinear operators are based on these representa-
tions.

There has also been a review of error estimation
for designed "lters in the context of the problems
herein. Given the relatively small amounts of avail-
able sample data in applications in which the
coe$cient of determination may be useful, error
estimation becomes an important factor. One can-
not, ipso facto, dismiss the resubstitution estimator,
because data splitting may be computationally too
costly, especially when one is searching through
subsets of predictor sets taken from arrays of over a
thousand measurements to "nd determinative sets.

References

[1] J.T. Astola, P. Kuosmanen, Representation and optimiza-
tion of stack "lters, in: E.R. Dougherty, J.T. Astola (Eds.),
Nonlinear Filters for Image Processing, SPIE and IEEE
Presses, Belingham, 1999.

[2] G.J.F. Banon, J. Barrera, Minimal representation for
translation-invariant set mappings by mathematical mor-
phology, SIAM J. Appl. Math. 51 (1991) 1782}1798.

[3] G.J.F. Banon, J. Barrera, Decomposition of mappings
between complete lattices by mathematical morphology,
Part I. general lattices, Signal Processing 30 (1993)
299}322.

[4] J. Barrera, E.R. Dougherty, N.S.T. Hirata, Design of opti-
mal morphological operators using prior "lters, Acta
Stereologica 16 (3) (1997) 183}200.

[5] J. Barrera, E.R. Dougherty, N.S. Tomita, Automatic pro-
gramming of binary morphological machines by design of
statistically optimal operators in the context of computa-
tional learning theory, Electronic Imaging 6 (1) (1997)
54}67.

[6] J. Barrera, N.S. Tomita, F.S. Correa da Silva, Automatic
programming of morphological machines by PAC learn-
ing, Proceedings of SPIE, Vol. 2568, 1995.

[7] E.J. Coyle, J.-H. Lin, Stack "lters and the mean absolute
error criterion, IEEE Trans. Acoust. Speech Signal Pro-
cess. 36 (8) (1988) 1244}1254.

[8] J.L. De Risi, V.R. Iyer, P.O. Brown, Exploring the meta-
bolic and genetic control of gene expression on a genomic
scale, Science 278 (1997) 680}686.

[9] L. Devroye, L. Gyor", G. Lugosi, A Probabilistic Theory
of Pattern Recognition, Springer, New York, 1996.

[10] E.R. Dougherty, Optimal mean-square N-observation
digital morphological "lters } Part I: optimal binary "lters,
CVGIP: Image Understanding 55 (1) (1992) 36}54.

[11] E.R. Dougherty, Optimal mean-square N-observation
digital morphological "lters } Part II: optimal gray-scale
"lters, CVGIP: Image Understanding 55 (1) (1992)
55}72.

[12] E.R. Dougherty, Existence and synthesis of minimal-basis
morphological solutions for a restoration-based boundary-
value problem, Math. Imaging Vision 6 (1996) 315}333.

[13] E.R. Dougherty, J. Barrera, Logical binary operators, in:
E.R. Dougherty, J.T. Astola (Eds.), Nonlinear "lters for
Image Processing, SPIE and IEEE Presses, Belingham,
1999.

[14] E.R. Dougherty, J. Barrera, Computational gray-scale op-
erators, in: E.R. Dougherty, J.T. Astola (Eds.), Nonlinear
Filters for Image Processing, SPIE and IEEE Presses,
Belingham, 1999.

[15] E.R. Dougherty, M.L. Bittner, Y. Chen, S. Kim, K.
Sivakumar, J. Barrera, P. Meltzer, J. Trent, Non-
linear "lters in genomic control, Proceedings of the
IEEE-EURASIP Workshop on Nonlinear Signal and
Image Processing, Antalya, 10}14 June, 1999.

[16] E.R. Dougherty, R.P. Loce, Optimal mean-absolute-error
hit-or-miss "lters: morphological representation and es-
timation of the binary conditional expectation, Opt. Eng.
32 (4) (1993) 815}823.

[17] E.R. Dougherty, R.P. Loce, Precision of morphological
representation estimators for translation-invariant binary
"lters: increasing and nonincreasing, Signal Processing 40
(3) (1994) 129}154.

[18] E.R. Dougherty, R.P. Loce, Optimal binary di!erencing
"lters: design, logic complexity, precision analysis, and
applications to digital document processing, Electron.
Imaging 5 (1) (1996) 66}86.

[19] E.R. Dougherty, D. Sinha, Computational mathematical
morphology, Signal Processing 38 (1994) 21}29.

[20] E.R. Dougherty, D. Sinha, Computational gray-scale
mathematical morphology on lattices (A computer-based
image algebra). Part I: architecture, Real-Time Imaging
1 (1995) 69}85.

[21] E.R. Dougherty, Y. Zhang, Y. Chen, Optimal iterative
increasing binary morphological "lters, Opt. Eng. 35 (12)
(1996) 3495}3507.

[22] D.J. Duggan, M.L. Bittner, Y. Chen, P.S. Meltzer, J.M.
Trent, Expression pro"ling using cDNA microarrays, Na-
ture Gene. 21 (1999) 10}14.

[23] M. Gabbouj, E.J. Coyle, Minimum mean absolute error
stack "ltering with structuring constraints and goals,
IEEE Trans. Acoust. Speech Signal Process. 38 (6) (1990)
955}968.

[24] C. Giardina, E.R. Dougherty, Morphological Methods in
Image and Signal Processing, Prentice-Hall, Englewood
Cli!s, NJ, 1988.

[25] N. Glick, Sample-based multinomial classi"cation, Bi-
ometrics 29 (1973) 241}256.

[26] N.R. Harvey, S. Marshall, The use of genetic algorithms in
morphological "lter design, Signal Processing: Image
Communication 8 (1) (1996) 55}72.

[27] D. Hausler, Decision theoretic generalizations of the PAC
model for neural nets and other learning applications,
Inform. Comput. 100 (1992).

[28] H.J. Heijmans, Morphological Operators, Academic
Press, New York, 1994.

2234 E.R. Dougherty et al. / Signal Processing 80 (2000) 2219}2235



[29] H.J. Heijmans, C. Ronse, I. The algebraic basis of math-
ematical morphology, dilations and erosions, Comput. Vi-
sion Graphics Image Process. 50 (3) (1990) 245}295.

[30] M. Hills, Allocation rules and their error rates, J. Roy.
Statist. Soc. B 28 (1966) 1}31.

[31] N.S.T. Hirata, E.R. Dougherty, J. Barrera, A switching
algorithm for design of optimal increasing binary "lters
over large windows, Pattern Recognition 33 (2000)
1052}1081.

[32] S. Kim, E.R. Dougherty, M.L. Bittner, Y. Chen, K.L.
Sivakumar, P.S. Meltzer, J.M. Trent, A general framework
for the analysis of multivariate gene interaction via expres-
sion arrays, Biomedical Optics (2000), in press.

[33] P. Kraft, N.R. Harvey, S. Marshall, Parallel genetic
algorithms in the optimization of morphological "lters:
A general design tool, Electron. Imaging 6 (4) (1997)
504}516.

[34] P. Kuosmanen, J. Astola, Optimal stack "lters under rank
selection and structural constraints, Signal Processing 41
(3) (1995) 309}338.

[35] P. Kuosmanen, J. Astola, Breakdown points, breakdown
probabilities, midpoint sensitivity curves, and optimiza-
tion of stack "lters, Circuits Systems Signal Process. 15 (2)
(1966) 165}211.

[36] P. Kuosmanen, P. Koivisto, H. Huttunen, J. Astola, Shape
preservation criteria and optimal soft morphological "lter-
ing, Math. Imaging Vision 5 (4) (1995) 319}336.

[37] R.P. Loce, E.R. Dougherty, Optimal morphological resto-
ration: The morphological "lter mean-absolute-error the-
orem, Visual Commun. Image Representation 3 (4) (1992)
412}432.

[38] R.P. Loce, E.R. Dougherty, Facilitation of optimal binary
morphological "lter design via structuring element libra-
ries and design constraints, Opti. Eng. 31 (5) (1992)
1008}1025.

[39] R.P. Loce, E.R. Dougherty, Mean-absolute-error repres-
entation and optimization of computational-morphologi-
cal "lters, CVGIP: Image Understanding 57 (1) (1995)
27}32.

[40] R.P. Loce, E.R. Dougherty, Enhancement and Restoration
of Digital Documents: Statistical Design of Nonlinear Al-
gorithms, SPIE Press, Bellingham, 1997.

[41] P. Maragos, R. Schafer, Morphological "lters * Part I:
their set-theoretic analysis and relations to linear shift-
invariant "lters, IEEE Trans. Acoust. Speech Signal Pro-
cess. 35 (1987) 1153}1169.

[42] P. Maragos, R. Schafer, Morphological "lters * Part II:
their relations to medians, order statistics, and stack "lters,
IEEE Trans. Acoust. Speech Signal Process. 35 (1987)
1153}1169.

[43] G. Matheron, Random Sets and Integral Geometry, Wiley,
New York, 1975.

[44] P. Salembier, Structuring element adaptation for mor-
phological "lters, Visual Commun. Image Representation
3 (2) 1992.

[45] O.V. Sarca, J. Astola, On connections between robustness,
precision, and storage requirements in statistical design of
"lters, SPIE Proceedings on Nonlinear Image Process. X,
Vol. 3646 January 1999, pp. 2}13.

[46] O.V. Sarca, E.R. Dougherty, J. Astola, Secondarily Con-
strained Boolean Filters, Signal Processing 71 (3) (1998)
247}263.

[47] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantit-
ative monitoring of gene expression patterns with a
complementary DNA microarray, Science 270 (1995)
467}470.

[48] J. Serra, Image Analysis and Mathematical Morphology,
Academic Press, New London, 1982.

[49] J. Serra (Ed.), Image Analysis and Mathematical Morpho-
logy, Vol. 2, Academic Press, New York, 1988.

[50] V. Vapnik, A. Chervonenkis, On the uniform convergence
of relative frequencies of events to their probabilities, The-
ory Probab. Appl. 16 (1971) 264}280.

[51] R.E. Walpole, R.H. Myers, Probability and Statistics for
Engineers and Scientists, Third Edition, Macmillan, New
York, 1985.

[52] L. Yin, Optimal stack "lter design: A structural approach,
IEEE Trans. Signal Process. 43 (4) (1995) 831}840.

E.R. Dougherty et al. / Signal Processing 80 (2000) 2219}2235 2235


